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13 Abstract

14 Soil moisture plays a critical role in the land—atmosphere coupling system. It is
15  replenished by precipitation and transported back to the atmosphere through land
16  surface evaporation and vegetation transpiration. Soil moisture is, therefore, influenced
17 by both precipitation and evapotranspiration, with spatial heterogeneities and seasonal
18  wvariations across different ecological zones. However, the effects of precipitation
19  volume, frequency, and evapotranspiration on soil moisture at different temporal scales
20  still remain poorly understood. Negative correlations between soil moisture and
21  precipitation have been observed in different ecosystems of the Northern Hemisphere.
22 In this study, the response of soil moisture to precipitation from 2000 to 2019 was
23 investigated using reanalysis data to determine the factors driving the negative
24  correlations. The joint distributions of precipitation and soil moisture were analyzed at
25  monthly and annual scales, using soil moisture and precipitation data from ERAS5-Land
26 and Global Precipitation Climatology Project, respectively. Nonlinear negative
27  dependencies of soil moisture to precipitation were revealed. Based on Ridge regression
28 models and Bayesian generalized non-linear multivariate multilevel models, these
29 negative dependencies were shown to be most prominent in temperate grasslands,
30 savannas, shrublands, deserts, xeric shrublands, and tundra regions and driven by the
31 land surface temperature and by the air temperature—gross primary production
32  relationship at the monthly scale. Additionally, the negative dependence was attributed
33  to soil property changes induced by freeze—thaw processes, precipitation seasonality,
34 and temperature fluctuations, which cause asynchronous variations between soil
35 moisture and precipitation at the seasonal scale. At the annual scale, the negative
36  dependence was linked to long-term shifts in global precipitation and temperature
37  patterns, which affect vegetation structure and surface characteristics, thereby reducing
38  soil water capacity. These findings enhance the understanding of land—atmosphere
39 interactions providing a valuable basis for future research on drought,
40  hydrometeorology, and ecological conservation.

41 Keywords: climate change, precipitation, soil moisture, ecoregions
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42 1. Introduction

43 Soil moisture is a critical source of water for vegetation growth, replenished by
44  precipitation and groundwater, and returned to the atmosphere through
45  evapotranspiration. It plays a key role in weather conditions, vegetation dynamics, and
46  groundwater storage (Li et al. 2022; Qiao et al. 2023; Vereecken et al. 2008; Zhou et al.
47 2021), with significant implications for the global climate. Surface soil moisture
48  regulates the distribution of available energy at the land surface and exchanges energy
49  with the near-surface atmosphere through sensible and latent heat fluxes, thereby
50 controlling the surface energy balance (Haghighi et al. 2018; McColl et al. 2017). In
51  contrast, deep soil moisture is more directly influenced by vegetation growth,
52  particularly by the development of plant roots, which play a crucial role in the vertical
53 infiltration of precipitation into deeper soil layers (Szutu and Papuga 2019; Xiao et al.
54 2024; Xue and Wu 2024).

55 Precipitation variability, which refers to the amplitude of precipitation fluctuations
56  over different times, influences soil moisture and thereby land surface coupling (Koster
57 et al. 2009; Taylor et al. 2012). Precipitation patterns are reported to have undergone
58  significant changes in recent decades (Lv et al. 2023; Mao et al. 2022; Wu et al. 2021),
59  mainly manifested as anthropogenic amplification of precipitation variability (Zhang et
60 al. 2024). The increase in the frequency of extreme precipitation events (Myhre et al.
61  2019; Wang et al. 2022) and decrease in the frequency of smaller precipitation events
62 (Ma et al. 2015) amplify soil moisture fluctuations and prolong the moisture stress
63  periods between consecutive precipitation events (Knapp et al. 2008). This can directly
64  affect vegetation growth and soil moisture responses (Feldman et al. 2024; He et al.
65  2023), particularly through changes in the duration and intensity of soil evaporation and
66  plant transpiration (Gu et al. 2021; Wullschleger and Hanson 2006). Soil moisture has
67  been shown to be negatively correlated with precipitation in certain regions, based on
68  Pearson correlation analyses (Cook et al. 2006; Yang et al. 2018). The changes in soil
69  moisture at different depths also show notable discrepancies (Shen et al. 2016; Zhu et

70 al. 2014). Surface soil moisture has been shown to respond to precipitation
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71 approximately a month earlier than deeper soil moisture, with a more pronounced
72 positive correlation between precipitation and soil moisture occurring at depths greater
73 than 50 cm (Zhang et al. 2020).

74 Most current analyses of the relationship between soil moisture and precipitation
75  assume a linear relationship. In reality, the response of soil moisture to precipitation is
76 extremely complex and often nonlinear (Drager et al. 2022). The nonlinear dependence
77  of soil moisture to precipitation is currently not well understood. Moreover, the factors
78  driving this negative dependence between soil moisture and precipitation remain poorly
79  understood due to the complicated land atmosphere coupling processes, particularly in
80 the Northern Hemisphere where different types of vegetation coverage are present.
81  Among the methods used to explore nonlinear relationships, the copula function is one
82  of the most widely applied approaches for modeling the joint distributions of
83  precipitation and soil moisture (Cammalleri et al. 2024). The copula is a stochastic
84  model that can reveal nonlinear and asymmetric dependence structures, which are
85  difficult to capture using traditional linear methods. It provides a flexible framework
86  for modeling joint distributions of multiple variables, allowing for a more precise
87  understanding of the evolving dependence of soil moisture on precipitation than that
88  offered by traditional linear regression and correlation methods.

89 In terms of the water cycle, soil moisture is replenished by precipitation and
90 groundwater, while also being absorbed by plant roots and lost through
91  evapotranspiration. Therefore, the change of soil moisture is actually simultaneously
92 influenced by precipitation volume, frequency, and evapotranspiration. However, the
93  response of soil moisture to precipitation and evapotranspiration varies across different
94  time scales. The long-term effects of changes in evapotranspiration and precipitation
95  on soil moisture are further shaped by seasonal transitions, with significant differences
96 observed at different soil depths (Szutu and Papuga 2019). These differences are
97 influenced by factors such as soil freeze—thaw processes and vegetation community
98  structure. Therefore, the relative contributions of evapotranspiration, precipitation

99  volume, and frequency to soil moisture changes should be quantified at different time
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100  scales.

101 Although previous studies have identified the mechanisms of soil moisture
102  variation across different time scales (Shen et al. 2018; Vidana Gamage et al. 2020),
103 large-scale regional patterns of soil moisture response to precipitation frequency remain
104  poorly explored, especially in the context of climate change. In particular, the
105  dependence of soil moisture to precipitation and its interactions with evapotranspiration
106  under conditions of frequent extreme climate events require further investigation.

107 The aim of this study was to explore the nonlinear responses of soil moisture to
108  precipitation at monthly and annual scales from 2000 to 2019, with a focus on the
109  Northern Hemisphere where vegetation coverage is abundant. The joint distribution of
110  precipitation and soil moisture was established to examine differences in soil moisture
111  responses to precipitation and the varying influences of precipitation volume, frequency,
112 and evapotranspiration on soil moisture at monthly and seasonal scales. The gross
113 primary productivity (GPP), land surface temperature (LST), and near-surface air
114  temperature (Ta) were selected as key driving factors in a Bayesian model, since the
115  dependence between precipitation and soil moisture is influenced by factors such as
116  vegetation growth, temperature, and soil properties. The driving factors and regional
117  characteristics of the negative correlation observed between precipitation and soil
118  moisture in certain regions were identified. This study enhances the understanding of
119  complex interactions between key meteorological factors such as precipitation,
120  evapotranspiration, and soil moisture under climate change, and provides a basis for

121 future land—atmosphere coupling system modeling.

122 2. Material and Method

123 2.1 Material

124  2.1.1 Soil moisture

125 The soil moisture data used in this study were obtained from the fifth generation
126 of reanalysis from the European Centre for Medium-Range Weather Forecasts

127 (ECMWF), using atmospheric forcing to control the simulated land field variables and
5
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128  provide the land components (ERAS5-Land) (Mufioz Sabater 2019). ERAS5-Land
129  provides a consistent description of the evolution of the energy and water cycles over
130  land, and therefore, has been widely used in various land surface applications such as
131 flood or drought forecasting (Joaquin Muifloz-Sabater 2021). The ERAS5-Land soil
132 moisture data are available for four layers, 0 to 7, 7 to 28, 28 to 100, and 100 to 289 cm,
133 ata 0.1° x 0.1° spatial and hourly temporal resolution from 1950 to present. The soil
134  moisture from the first three soil layers during 2000 to 2019 were used. They were
135  resampled to a 0.25° x 0.25° spatial resolution and averaged to daily, monthly, and

136  yearly scales to be consistent with other variables in this study.

137 2.1.2 Precipitation

138 The Global Precipitation Climatology Project (GPCP) is a global precipitation
139  project that integrates infrared and microwave data from multiple geostationary and
140  polar-orbiting satellites, and corrected by many meteorological station observations
141 (Adler et al. 2003; Huffman and Bolvin 2013). It is an important component of the
142 Global Energy and Water Cycle Experiment in the World Climate Research Programme.
143 A daily precipitation field with a 1° X 1° resolution since 1996 was generated by
144 integrating the satellite products and then adjusting the daily precipitation by monthly
145  data observed from the ground to make it consistent with the meteorological
146  observations. Daily precipitation was resampled to a 0.25° x 0.25° spatial resolution
147  and then used to calculate the total precipitation volume and precipitation frequency at

148  the monthly, seasonal, and annual scale from 2000 to 2019.

149  2.1.3 Covariate variables

150  2.1.3.1 Gross primary production

151 The gross primary production (GPP) dataset was from the Vegetation Optical
152 Depth Climate Archive v2, which used microwave remote sensing estimates of
153  vegetation optical depth to estimate the GPP at the global scale for the period 1988 to
154 2020 (Wild et al. 2022). These GPP data were trained and evaluated against FLUXNET

155  in-situ observations and compared with largely independent state-of-the-art GPP
6
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156  datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS). The
157  Vegetation Optical Depth Climate Archive v2 GPP dataset has a 0.25° x 0.25° spatial
158  and half-monthly temporal resolution, covered from 2000 to 2019.

159  2.1.3.2 Near surface air temperature

160 The air temperature data (T.) were obtained from the Climatic Research Unit
161  gridded Time Series (CRU TS), which is one of the most widely used climate datasets
162  and is produced by the National Centre for Atmospheric Sciences in the United
163  Kingdom. CRU TS v4.07 was derived by the interpolation of monthly climate
164  anomalies from extensive networks of weather station observations (Harris et al. 2020).
165 It provides monthly land surface data from 1901 to 2020 at a 0.5° x 0.5° resolution
166  worldwide. The mean temperatures at the monthly, seasonal, and annual scales during
167 2000 to 2019 were calculated and resampled to a 0.25° x 0.25° spatial resolution.

168  2.1.3.3 Land surface temperature

169 Land surface temperature (LST) data were accessed from the European Space
170 Agency Climate Change Initiative (CCI), which is funded by the European Space
171 Agency as part of the Agency’s CCI Program. It aims to significantly improve current
172 satellite LST data records to meet the challenging Global Climate Observing System
173 requirements for climate applications and realize the full potential of long-term LST
174  data for climate science (Hollmann et al. 2013). These data were the first global LST
175  climate data records of over 25 years at a 0.25° x 0.25° resolution and with an expected
176  error within 1 K. The LST dataset included ascending and descending orbit data, which
177 were used to calculate the mean value of separate annual and monthly averages during
178 2000 to 2019.

179  2.1.3.4 Evapotranspiration

180 Evapotranspiration data were accessed from the Global Land Evaporation
181  Amsterdam Model (GLEAM) v3.8a, which provides data of the different components
182  of land evapotranspiration, including transpiration, bare-soil evaporation, interception
183  loss, open-water evaporation, and sublimation, in addition to other related variables

184  such as surface and root-zone soil moisture, sensible heat flux, potential evaporation,
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185  and evaporative stress conditions (Miralles et al. 2011). The monthly, seasonal, and
186  annual averages during 2000 to 2019 were calculated based on a 0.25° x 0.25° spatial
187  resolution.

188  2.1.3.5 Terrestrial ecoregions

189 Data on terrestrial ecoregions around the globe were accessed from the
190  Conservation Biology Institute (Olson et al. 2001). These ecoregions are relatively large
191  units of land containing distinct assemblages of natural communities and species, with
192 boundaries that approximate the original extent of natural communities prior to major
193  land-use changes. The delineations were completed based on hundreds of previous
194  biogeographical studies and were refined and synthesized using existing information in
195  regional workshops over the course of 10 years to assemble the global dataset (Olson
196 et al, 2001). An ecological layer file encompassing 16 major categories was
197  downloaded.

198 All of the Ta, LST, GPP, soil moisture, and precipitation datasets were masked by
199  these 16 terrestrial ecoregions (Fig. 1) in a 0.25° grid, and monthly, seasonal, or annual

200 mean values in the regions were calculated separately.
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202 Fig. 1 The 16 Terrestrial Ecoregions of the Northern Hemisphere.



https://doi.org/10.5194/egusphere-2025-762
Preprint. Discussion started: 7 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

203 2.2 Method

204  2.2.1 Joint distribution

205 In this study, the joint distribution between precipitation and soil moisture from
206  depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, using the copula function at both the
207  monthly and annual scales was established. A copula function links multivariate
208  distribution functions with their one-dimensional marginal distributions, and is used for
209 the examination of dependencies between multiple variables. It captures nonlinear
210  dependence structures through joint and marginal probabilities of a pair of variables in
211  complex multivariate systems (Nelsen 2005). In this study, the copula function was
212 used to explore the nonlinear dependence between precipitation and soil moisture

213 (Equation 1):

214 Fpsy(x,y) = C(FP (x), FSM(y)): (1)
215  where Fp(x) and Fsm(y) denote the marginal distribution of precipitation and soil
216  moisture, respectively, and C(u,v) is the copula function linking these two variables.
217  The process for establishing the joint distribution was as follows: (1) The marginal
218  distributions of precipitation and soil moisture were fitted using an automatic
219  optimization function. (2) The most suitable copula function was selected based on the
220  Akaike Information Criterion (AIC) values at the grid level, including Gaussian copula,
221 Student’s t copula, Clayton copula, and 37 other copula functions. Different copula
222  functions may be selected for different grid cells. (3) The chosen copula function was
223 then used to compute the corresponding Kendall’s tau (1), upper tail dependence (Av),
224  and lower tail dependence (AL).

225 The statistic T measures the correlation between two variables to determine the
226  presence of a monotonic relationship. Au and AL represent the likelihood that, when one
227  variable reaches extreme high or low values, the other variable also reaches extreme
228  values. The calculations of 1, Au, and AL are based on the dependence parameters of the
229  joint distribution of precipitation and soil moisture, and depends on the selected copula

230  function using the AIC method. Taking the Tawn copula function as an example, the

9
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231  calculation of T, Au, and Av are based on the following equations.

232 r=1-2L 4 20 2)
233 w=(1-28) (229, 3)
234  and

235 A =5-(2-219), @)

236  where 0 is the dependence parameter of the Tawn copula, and & represents the
237  asymmetry parameter. For some copula functions, such as Clayton copula, the
238  Kendall’s T values get the priority over the upper and lower tail dependencies in the
239  estimation process. All the calculations were performed using R v4.3.3 with the
240  VineCopula and copula packages, for which detailed calculation methods for t, Au, and

241 A for all copulas are provided.

242 2.2.2 Ridge regression

243 Ridge regression is designed to address collinear data, although it is a biased
244  estimation method. It is an improved least squares estimation used to generate more
245  reliable regression coefficients at the cost of unbiasedness. Ridge regression
246  outperforms the traditional least squares method when fitting ill-conditioned data
247  (McDonald 2009). Due to the large uncertainty in precipitation and soil moisture data,
248  ridge regression models were applied for three soil layers, and for both monthly and
249  seasonal scales. Spring was defined as from March to May, summer from June to
250  August, autumn from September to November, and winter from December to February
251  of the following year. Precipitation frequency, volume, and evapotranspiration were
252  treated as predictor variables, with T, as a control variable and soil moisture as the
253  response variable.

254 To clearly differentiate the influence of variables, the regression coefficients for
255  precipitation volume, frequency, and evapotranspiration were normalized using
256  Equation (5) and then assigned to the three primary colors. This approach resulted in a

257  gridded ternary phase diagram.
vi

3
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259  where v;(vy, v,, v3) represent precipitation frequency, precipitation volume, and

260  evapotranspiration (ET), respectively, and W; refers to the adjusted weight of v;.

261  2.2.3 Bayesian generalized non-linear multivariate multilevel models

262 The Bayesian generalized non-linear multivariate multilevel model integrates
263  Bayesian inference, generalized linear models, non-linear modeling, multivariate
264  analysis, and hierarchical structures, making it well-suited for complex hierarchical
265  data. It can effectively capture non-linear dependencies among multiple response
266  variables (Browne and Draper 2006; Biirkner 2017). The model parameters are treated
267  as random variables with prior distributions under the Bayesian framework. Posterior
268  distributions of the parameters are obtained by combining the likelihood function and
269  prior distributions. The Markov Chain Monte Carlo (MCMC) algorithm is then used to
270  resample from the posterior distribution and estimate the posterior means of the
271  parameters to represent the optimal results. Given the hierarchical and multivariate
272 nature of the data, a multilevel structure and multivariate analysis was introduced to
273 model the mixed effects of variables and to capture the relationships among multiple
274  related response variables. Random effects were also incorporated to account for
275  heterogeneity among individuals and reflect the varying effects of univariate or
276 ~ multivariate mixtures on the response variables, thereby improving the accuracy of
277  estimates.

278 Since the impact approaches of GPP, LST, and Ta on precipitation (P) and soil
279  moisture (SM) are often unknown, the Gaussian distribution was specified as the prior
280  distribution for these variables in the Bayesian model. To investigate how GPP, LST,
281 and Ta influence the precipitation—soil moisture coupling relationship, both
282  precipitation and soil moisture were treated as response variables. Bayesian non-linear
283  multivariate multilevel models were developed at both the monthly and seasonal scales,
284  with independent models for 16 ecological zones (Equation 6):

285 Posterior estimates = bf(P ~ T, + GPP + LST + Ta:GPP + To:LST + GPP:LST + T.:GPP:LST) +

286 bf(SM ~ T, + GPP + LST + T,:GPP + To:LST + GPP:LST + Ta:GPP:LST), (6)

11
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287  where the colon represents multivariate mixed effects of different variables; bf stands
288  for Bayesian formula, used to specify each part of the model for P and SM separately;
289  and the “+” combines P and SM into a multivariate model. The model was implemented
290 in R 4.3.3 using the brms package, which performs diagnostic checks on the sampling
291  results using indicators such as the Gelman—Rubin diagnostic (Rhat statistic) and the
292  effective sample size (ESS). To ensure stability and convergence, four MCMC chains
293  were used for iterative sampling, with each chain running 4,000 iterations, including
294 2,000 warm-up iterations. A maximum tree depth of 10 was set. Estimate values of all

295  ecoregions were classified into different clusters using the K-means method in R 4.3.3.

206 3. Results

297 3.1 Estimation from the copula function
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299 Fig. 2 Spatial distribution of Kendall’s tau (z), the upper tail dependence (Au), and the lower tail

300 dependence (AL) on the 0.25° x 0.25° grids between monthly precipitation volume and soil moisture
301 during 2000 to 2019. The three columns are for the soil moisture from depths of 0 to 7 cm, 7 to 28 cm,
302 and 28 to 100 cm, respectively.

303

304 The copula analysis of monthly average soil moisture and total monthly
305  precipitation volume revealed a clear negative dependence at all three soil depths (a2,
306 b2, and c2; Fig. 2). The percentages of grid cells exhibiting negative dependence at

307  these depths were 29.3%, 25.3%, and 30.9%, respectively. Regions with negative
12
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308  dependence were primarily located in the eastern United States, central and northern
309  Russia, northern Asia, and the Sahara Desert. The extent of the negative dependence
310  expanded significantly with an increase in soil depth in the Sahara, and covered much
311 of northern Africa. In North America and northern Asia, the negative dependence was
312 most prominent in the ecological zones of temperate grasslands, savannas, and
313  shrublands, with additional occurrences in the deserts and xeric shrublands and tundra
314  regions.

315 Regions exhibiting high AL values were primarily located in the northern and
316  western United States, eastern Russia, the temperate coniferous forests of Mongolia,
317  and the Mediterranean forests, woodlands, and scrublands of Africa (al, bl, c1; Fig. 2).
318  The extent of areas showing dependence decreased as soil depth increased. Similarly,
319  Au exhibited a clear reduction in spatial extent with increasing soil depth, with the
320  majority of these regions located in the southern Sahara Desert, India, southern and
321  eastern China, and small parts of northern Russia. However, no clear correspondence
322  between these regions and specific ecological zones was observed (a3, b3, c3; Fig. 2).
323 From the annual scale copula results (Fig. 3), precipitation and soil moisture
324  generally exhibited positive dependencies across the entire soil profile. However,
325 negative dependencies were observed in regions such as the southern Sahara Desert,
326  Mongolia, and the Elizabeth Islands, reaching 3.0%, 4.0%, and 8.6%, respectively (a2,
327 b2, c2; Fig. 3). The negative dependencies in these areas expanded outward, primarily
328  concentrated in the montane grasslands and shrublands region. Both the AL and the Au
329  displayed scattered, patchy distributions, with average values for each soil layer ranging
330 from 0.4 to 0.6.

331

13
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Fig. 3 Spatial distributions of the 7, AU, and AL on the 0.25° x 0.25° grids between annual
precipitation volume and soil moisture during 2000 to 2019. The three columns are for the soil moisture

from depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, respectively.

3.2 Control of soil moisture by precipitation and evapotranspiration

(a) Layer 1 (b) Layer 2

100°W 0° 100°E Frequency Volume
Longitude

Fig. 4 Ternary map of factors controlling soil moisture, monthly, for the period 2000 to 2019. The
bottom-left histogram in the subgraph represents the proportion of grid cells where one variable exerts
strong univariate control (with a regression coefficient greater than 75% of the total sum of the three

variables), suggesting that soil moisture was predominantly controlled by that specific variable.

On the monthly scale, precipitation exerted the strongest control over soil moisture
(Fig. 4), with regions most influenced by precipitation accounting for more than 40%

of the variation. These areas were primarily located in the boreal forest/taiga, temperate
14
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346  grasslands, savannas, shrublands, and the eastern part of North America. In contrast,
347  regions where evapotranspiration predominated were found in Alaska—Northwest
348  Canada, the western United States, the Sahara Desert, and the Middle East. High-
349 latitude regions, especially northern Canada, were primarily influenced by precipitation
350 frequency. Areas where precipitation volume, frequency, and evapotranspiration had
351  similar levels of control were mainly found in Eastern Europe and Russia.

352 The results from ridge regression revealed more distinct patterns at the seasonal
353  scale compared to the monthly scale (Fig. 5). Soil moisture in spring and summer was
354  mainly controlled by evapotranspiration, which influenced over 40% of grid cells,
355  particularly in the middle soil layers, where it dominated nearly 80%. In contrast,
356  precipitation volume had a greater influence during autumn and winter, particularly in
357  the continental United States, southern Sahara Desert, coastal India, and eastern China.
358  Additionally, as soil depth increased, the influence of evapotranspiration and
359  precipitation frequency gradually intensified. However, in summer, as soil depth
360 increased, the area primarily controlled by precipitation volume expanded (indicated
361 by an increase in the intensity of magenta color in the figures) especially in the eastern
362  United States, Europe, and South Asia. These regions remained strongly influenced by
363  precipitation volume even as evapotranspiration control increased with increasing soil
364  depth during autumn. Northern Russia, Canada, Greenland, and northern Alaska were
365 notably influenced by both precipitation frequency and precipitation volume, with this
366  effect being more pronounced during the non-growing season. In winter, the area

367  controlled by precipitation frequency was larger than that in spring.
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Fig. 5 Ternary map of factors controlling soil moisture, annually, for the period 2000 to 2019. The
bottom-left histogram in the subgraph represents the proportion of the grid cells where one variable exerts
strong univariate control (with a regression coefficient greater than 75% of the total sum of the three

variables), suggesting that soil moisture was predominantly controlled by that specific variable.

3.3 Drivers of negative dependencies between soil moisture and
precipitation

For each model in this study, four MCMC chains were used for iterative sampling.
The sampling results demonstrated that the chains for both the monthly and annual
scales were well-distributed in the parameter space, with no noticeable trends or drifts,
indicating convergence to the target posterior distribution. The convergence was

considered satisfactory, with all models yielding a Rhat value below 1.05 (Fig. S1, S2).
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381 Fig. 6 Posterior estimates of the covariate variables of the Bayesian generalized non-linear
382  multivariate multilevel model, built using monthly data. The columns represent soil depths of 0 to 7 cm,
383 7 to 28 cm, and 28 to 100 cm. Red lines indicate linear regressions of precipitation and soil moisture
384 across all ecoregions, with cluster groups represented by three circles.
385
386 The fitted values of multiple drivers for both precipitation and soil moisture were
387  calculated. When precipitation and soil moisture were either positive or negative
388  simultaneously (quadrants I and III), the driver promoted a positive dependence
389  between the two variables. Conversely, when they were in quadrants II and IV, the
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390 driver induced a negative dependence. A comparison of these results with those in
391  Section 3.1 shows that the negative dependence observed at the monthly scale in the
392  temperate grasslands, savannas, and shrublands was driven by LST and T.:GPP across
393  all three soil layers, particularly in quadrant I'V, where precipitation increased while soil
394  moisture decreased. Other factors, however, drove a positive dependence (Fig. 6).

395 The negative dependence between precipitation and soil moisture in the surface
396 layer across the Northern Hemisphere was primarily driven by the interactions between
397  GPP:LST and T.:GPP. The regression trend line intersected quadrants I and IV.
398  Ecological zones affected by GPP:LST included temperate coniferous forests, boreal
399  forests, tundra, and temperate broadleaf mixed forests. The negative relationship driven
400 by GPP:LST was predominantly concentrated in quadrant IV, where increased
401  precipitation lead to decreased soil moisture in the boreal forest, tundra, temperate
402  coniferous forest, and temperate broadleaf mixed forest, while GPP:LST driven
403  decreased precipitation and increased soil moisture in deserts and xeric shrublands. In
404  contrast, GPP:LST also drove a negative dependence in the middle soil layer and a
405  positive dependence in the deep soil layers of deserts and xeric shrublands. The negative
406  dependence driven by T.:GPP was mainly found in quadrant II, with distributions in
407  deserts and xeric shrublands, boreal forests, montane grasslands and shrublands,
408  temperate broadleaf mixed forests, and tundra. LST also influenced temperate
409  coniferous forests, temperate broadleaf mixed forests, and deserts and xeric shrublands,
410  all of which were located in quadrant I'V.

411 In contrast, for the middle soil layer, all regression slopes of the variables were
412 positive. GPP, T.:GPP:LST, and T.:LST had minimal impact across all ecological zones,
413 with estimated values near the origin and only two distinct clustering results. The first
414  cluster was located in quadrant I, while the second cluster exhibited some negative
415  dependence, affecting a small portion of forests and shrublands. This cluster was
416  relatively flat, particularly with LST and T, crossing the x-axis, suggesting that changes
417  in precipitation were driven by LST and T., while soil moisture remained constant.

418 The negative dependence between precipitation and soil moisture in the deep soil
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419  layers was partly driven by the second and third clusters. GPP:LST drove a reduction
420  in precipitation and an increase in soil moisture in tropical and subtropical grasslands,
421  savannas, shrublands, and tropical and subtropical coniferous forests. T, and T,:GPP
422  drove an increase in precipitation and a decrease in soil moisture in Mediterranean
423 forests, woodlands, and scrub, as well as in temperate grasslands, savannas, and
424  shrublands. The mixed effects of T.:GPP:LST and T.:LST had minimal impact across
425  all ecological zones, with all estimates concentrated near the origin and only two
426  clusters observed. The second cluster was primarily located in quadrant I, where both
427  precipitation and soil moisture increased, leading to a positive dependence between
428  them. The negative dependence observed in the third cluster, distributed across
429  quadrants II and IV, showed decreased precipitation and increased soil moisture in
430  quadrant II, and increased precipitation and decreased soil moisture in quadrant IV.

431  Most of the affected ecoregions were forest types.
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Fig. 7 Posterior estimates of the covariate variables of the Bayesian generalized non-linear

multivariate multilevel model, built using annual data. The columns represent soil depths of 0 to 7 cm, 7

to 28 cm, and 28 to 100 cm. Red lines indicate linear regression of precipitation and soil moisture across

all ecoregions, with cluster groups represented by three circles.

Interannual negative dependence was primarily observed in the montane

grasslands and shrublands region, where GPP:LST drove this pattern across all three

soil layers. All other variables lead to positive dependence (Fig. 7). The long-term trend
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441  in the annual-scale Bayesian model revealed strong patterns, with the most significant
442  difference compared to the monthly scale being the influence of T.:GPP:LST and
443  T,:LST, where different ecological zones exhibited substantial variation. The second
444 cluster across all soil layers was consistently distributed in quadrant I, while the
445  boundaries of the first cluster were located in quadrant III, far from the origin. The third
446  cluster spanned quadrants II and IV, with its origin in quadrant IV, suggesting that nearly
447  all variables drove an increase in precipitation and a decrease in soil moisture in the
448  ecological zones of the third cluster. Among the multiple variables, Ta drove the most
449  negative dependence, with the greatest differences observed between ecological zones.
450 In the surface layer, LST alone drove the negative dependence in the mangrove,
451  rock, and ice regions, which are characterized by extremely wet soils. Ta drove the
452  negative dependence, resulting from decreased precipitation and increased soil
453  moisture, in tropical and subtropical coniferous forests, lakes, and rock and ice regions.
454  Additionally, Ta drove the negative dependence in temperate broadleaf and mixed
455  forests and tundra regions, where precipitation increased with a decrease in soil
456  moisture.

457 In the middle soil layers, the negative dependence driven by T was evenly
458  distributed across quadrants IT and I'V. In temperate forests, arid shrublands, and flooded
459  grasslands and savannas, the negative dependence was characterized by increased
460  precipitation and decreased soil moisture. In contrast, in tropical and subtropical
461  coniferous forests and temperate coniferous forests, the negative dependence was
462 marked by decreased precipitation and increased soil moisture. The negative
463  dependence driven by T.:GPP was entirely due to reduced precipitation and increased
464  soil moisture in tropical and subtropical moist broadleaf forests. The negative
465  dependence driven by T..LST was fully distributed in quadrant IV, where it was
466  characterized by increased precipitation and decreased soil moisture. This pattern was
467  observed in regions such as the montane grasslands and shrublands; tropical and
468  subtropical coniferous forests; tropical and subtropical grasslands, savannas, and

469  shrublands; and rock and ice regions.
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470 In the deep soil layers, the dependencies across different ecological zones were
471 more dispersed. GPP, GPP:LST, and T.:GPP exhibited a strong positive dependence
472  trend, with slopes close to 1. In contrast, the positive dependence driven by T. and
473 T.:GPP:LST had smaller slopes, nearly parallel to the x-axis, suggesting an increase in
474  precipitation as soil moisture remained constant. The strongest drivers of negative
475  dependence in the deep layers were GPP:LST and T.. The negative dependence driven
476 by GPP:LST was found in the ecological zones of quadrant IV, including rock and ice
477  regions, Mediterranean forests, woodlands, and scrub, as well as tundra and temperate
478  coniferous forests in quadrant II. The negative dependence driven by T, was observed
479  in rock and ice regions, lakes, and temperate coniferous forests in quadrant II, and

480  flooded grasslands and savannas in quadrant I'V.

481 4. Discussion

482 4.1 Characteristics of negative dependence areas

483 In this study, joint distributions of precipitation and soil moisture were constructed
484  using Kendall’s 1 to characterize the nonlinear relationship between them. The analysis
485  revealed a negative dependence between precipitation and soil moisture at both the
486  monthly and annual scales from 2000 to 2019. The t value at the monthly scale was
487  higher than that at the annual scale, with a larger area exhibiting a negative dependence.
488  Therefore, seasonal variations likely contributed to the negative dependence at the
489  monthly scale, while long-term trends, particularly the Arctic amplification effect
490  associated with global climate change, drove the negative dependence at the annual
491  scale.

492 Regions exhibiting negative dependence, such as deserts and xeric shrublands,
493  temperate grasslands, savannas, shrublands, and tundra, are all arid or semi-arid and
494  characterized by shrub-dominated communities with little or no tree growth (Olson and
495  Dinerstein 1998). Deserts and xeric shrublands show significant annual precipitation
496  variability across the region. Except for the peripheral areas, annual precipitation

497  typically does not exceed 250 mm, and evaporation exceeds precipitation (Lockwood
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498 et al. 2006). The tundra, a treeless desert found in high-latitude Arctic regions (also
499  known as polar desert), is primarily distributed in Alaska, Canada, Russia, Greenland,
500 Iceland, and Scandinavia, as well as the sub-Antarctic islands (Olson and Dinerstein
501  1998). Vegetation in this region is sparse, with dry winters and extremely low
502  temperatures (Xue et al. 2021). The average annual precipitation is approximately 350
503 mm, and the dominant vegetation includes sedges, heaths, and dwarf shrubs (Olson and
504  Dinerstein 1998).

505 Temperate grasslands, savannas, and shrublands differ from other ecosystems in
506  several ways. In North America, this ecosystem is known as prairie, in South America
507  as pampas, in Southern Africa as veld, and in Asia as steppe. These ecosystems differ
508  significantly from tropical grasslands, particularly in their annual temperature regime
509 and the types of species present. Typically, these regions lack trees, except for riparian
510  or gallery forests along streams and rivers. However, some areas support savanna
511  conditions, characterized by scattered individuals or clusters of trees (Olson and
512  Dinerstein 1998). A defining feature of temperate grasslands is that the dominant
513  vegetation consists of grasses, with little to no trees or large shrubs. These regions
514  experience a large temperature difference between summer and winter, moderate
515  precipitation, and fertile soils. On the monthly scale, regions with a negative
516  dependence between precipitation and soil moisture are generally arid or semi-arid and
517  lack tree growth (Olson and Dinerstein 1998). Additionally, studies have shown that
518  soil moisture influences precipitation primarily by increasing it in arid regions (Donat
519  etal. 2017).

520 The clear dependencies between precipitation and soil moisture in Mediterranean
521  forests, woodlands, and scrub were driven by the highly seasonal nature of
522  meteorological drought in the Mediterranean climate zone, typically occurring in the
523  summer. During the winter, when precipitation was insufficient, soil moisture was
524  rapidly depleted, leading to soil drought in the summer and consequently high levels of
525  soil temperature—drought (high AL). However, extreme precipitation did not necessarily

526  result in a sharp increase in soil moisture, and this was influenced by factors such as
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527  vegetation community structure, soil texture, and geographical conditions, which

528  account for the lack of distinct ecological zone differences in Au.

529 4.2 Main control factors in negatively dependent regions

530 The seasonal scale exhibited a clear pattern: The growing season was primarily
531  controlled by evapotranspiration, while the non-growing season was driven by
532  precipitation. During spring and summer, adequate precipitation and higher
533  temperatures fostered vegetation growth. The high temperature and precipitation during
534  these periods accelerated evapotranspiration. Soil moisture in the surface layers of the
535  Northern Hemisphere was therefore controlled by evapotranspiration, while the middle
536  soil layers were influenced by plant transpiration. In deep soil layers (28—100 cm in
537 ERAS-Land), root density decreases (Stocker et al. 2023), and only certain forest
538  species and drought-adapted shrubs with extensive root systems contribute to
539 transpiration. Consequently, precipitation percolates into the deep soil layers, where it
540 is retained. In high-latitude regions, characterized by temperature-limited ecosystems
541  with low annual precipitation, conifer species (e.g., Abies, Picea, Larix, and Pinus)
542  dominate, with a limited presence of deciduous trees (Walker et al. 2016). In the boreal
543  forests of North America, Canada, and Siberia, winters are long and harsh, while
544  summers are short and cool. The low temperatures constrain evapotranspiration and
545  plant transpiration rates. Despite the presence of some deciduous forests, soil moisture
546  during the non-growing season is primarily controlled by precipitation rather than by
547  evapotranspiration due to the extremely low temperatures. Similarly, precipitation
548  dominates soil moisture regulation in temperate grasslands, savannas, and shrublands,
549  which experience semi-arid to humid climates. These regions receive annual
550  precipitation ranging from 150 to 1200 mm and average temperatures between 0 and
551  25°C (Sala et al. 2001). The soils in these grasslands are generally highly permeable
552  with moderate water-holding capacity, allowing precipitation to infiltrate easily and
553  replenish deep soil moisture. Grassland root systems both suppress surface evaporation
554  and promote transpiration. During the rainy season, most water percolates into the soil,

555  where it is stored in deep layers, creating a reservoir effect (Scholes and Walker 1993).
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556  This stored moisture becomes the primary water source for vegetation during the dry
557  season. As the dry season progresses, soil moisture is gradually depleted until it is
558  completely exhausted. Thus, the reduction in soil moisture during the growing season
559  is mainly due to rapid consumption through evapotranspiration, while in the non-
560  growing season, it is primarily caused by insufficient precipitation replenishment.

561 Autumn and winter mark the dry season for much of the Northern Hemisphere,
562  when evapotranspiration rates decrease. Studies have shown that during the freezing
563  seasons, larger snow depths help maintain soil temperature and mitigate the impact of
564  frost on the soil. For certain narrow frozen soils, sufficiently thick snow may also allow
565  more meltwater to infiltrate into the soil (Jafarov et al. 2018). As a result, high-latitude
566  regions are more strongly influenced by precipitation frequency and volume during

567  autumn and winter.

568 4.3 Mechanism of negative dependence between precipitation and soil
569  moisture

570 The negative dependence between precipitation and soil moisture in the temperate
571  grasslands, savannas, and shrublands was primarily driven by LST and T.:GPP. These
572  regions, characterized by a semi-arid climate, experienced joint control by precipitation
573  and evapotranspiration in both surface and deep soil layers. During the growing season,
574  high evaporation and plant transpiration rates rapidly depleted soil moisture in the
575  surface layer, with the combined effects of higher LST and T.:GPP driving the negative
576  dependence. This negative relationship was also observed in deserts, xeric shrublands,
577  montane grasslands, shrublands, and tundra. The climate of these ecoregions are
578  typically dry, with high evapotranspiration and low precipitation, limiting the
579  accumulation and retention of soil moisture. In high-temperature environments,
580 increased evapotranspiration rates and VPD exacerbate soil moisture depletion, even
581  when precipitation increases. These regions generally have a low GPP, and the effective
582  use of precipitation by vegetation is limited (Xue and Wu 2023), intensifying the

583  negative dependence between precipitation and soil moisture. The montane grasslands
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584  and shrublands, located at higher altitudes, experience more extreme temperature
585  fluctuations (Olson and Dinerstein 1998). In mountainous regions, the likelihood of
586  warming is higher than in lowland areas (Pepin et al. 2022), which leads to a rapid
587 increase in evapotranspiration rates. Although GPP may increase with higher
588  temperatures, the vegetation in these areas typically grows slowly and is characterized
589 by shallow root systems (Stocker et al. 2023), limiting its ability to use additional
590  precipitation and resulting in a reduction in surface soil moisture.

591 Soil moisture reduction in the 7-to-28-cm depth due to evapotranspiration was
592  driven by several factors, the primary one being the absorption of soil water by plant
593  roots under conditions of high LST and GPP. Additionally, the arid surface soil induced
594  upward movement of soil water from the middle layer due to the osmotic and matric
595  potential, further contributing to moisture depletion. The water compensation
596  mechanism of plant roots can also lead to reduced water uptake in the surface layer
597  during dry conditions and an increased uptake in the wetter layers (Yadav Brijesh et al.
598  2009). Furthermore, summer precipitation is often unstable, and heavy rainfall fails to
599  rapidly penetrate the deep soil layers. As a result, at this depth, soil moisture reduction
600 is predominantly driven by high land surface temperature and evapotranspiration.
601 Intense evapotranspiration during the growing season transports moisture to the
602  atmosphere, increasing vapor pressure and promoting precipitation. However, even
603  with increased rainfall, the water demands of vegetation and evapotranspiration are
604 insufficiently met. Additionally, high temperatures can lead to surface soil sealing,
605  preventing rainfall from effectively entering the root zone.

606 During the non-growing season, low temperatures reduce evapotranspiration rates,
607  and soil moisture is primarily controlled by precipitation volume and frequency. In cold
608  conditions, precipitation often falls as snow, which accumulates on the surface. A low
609  LST can cause soil freezing, and the presence of surface litter may further insulate the
610  soil, preventing timely moisture replenishment. Although evapotranspiration is reduced,
611  some deep-rooted plants may continue to absorb water to a limited extent. Additionally,

612  during precipitation intervals, soil moisture may gradually decrease due to residual
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613  evapotranspiration, micro-scale runoff, or plant water consumption (Tomlinson et al.
614  2013), leading to a negative dependence between precipitation and soil moisture.
615  Empirical studies have shown that in temperate grasslands, savannas, and shrublands,
616  plants retain their leaves during the dry season to facilitate evaporative cooling and
617  protect against temperature fluctuations (Prior et al. 1997). This strategy is also
618  observed in regions with similar climatic conditions, such as deserts and xeric
619  shrublands, where during dry winters, precipitation and soil freezing reduce soil
620  moisture.

621 The boreal forest and tundra ecosystems, located in the circumpolar Arctic, are
622  temperature-limited systems. Permafrost in these regions can lead to surface runoff of
623  some precipitation, preventing effective infiltration into the soil. Additionally, canopy
624  interception further limits soil moisture. As a result, in higher-latitude ecosystems such
625 as the boreal forest, tundra, temperate coniferous forests, and temperate broadleaf-
626  mixed forests, surface soil moisture tends to decrease. In these regions, an increase in
627  LST and T. mitigates the effects of temperature limitation, allowing precipitation to
628 infiltrate the soil. This transforms the precipitation—soil moisture relationship in boreal
629  forests and tundra from a negative to a positive dependence. In contrast, in temperate
630  broadleaf and mixed forests, the negative dependence of increased precipitation and
631  reduced soil moisture is primarily driven by high evapotranspiration. These forests
632  experience warm, humid summers and cool, moderate winters, with ample and evenly
633  distributed annual precipitation. The vegetation is a mix of deciduous species (e.g., oak,
634  maple, beech) and coniferous species (e.g., pine, spruce) (Olson and Dinerstein 1998).
635  Due to the moderate climate, species diversity in these forests is relatively high. While
636  precipitation and soil moisture infiltration support the water cycle, the high rate of
637  evapotranspiration can lead to rapid depletion of surface soil moisture, despite ample
638  precipitation.

639 The negative dependence observed in mid-to-deep soil layers may occur when a
640  single variable predominates, limiting the compensatory mechanisms within the

641  ecosystem. In contrast, a positive dependence driven by mixed effects can result from
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642  a synergistic interaction between GPP and LST. For instance, an increase in GPP
643  suggests an enhanced water-use efficiency or a deeper root growth, which allows for
644  more effective water uptake. At the same time, an increase in LST may facilitate
645  moisture release from the soil, providing additional water resources for plants. This
646  synergistic effect can counterbalance or even reverse the negative effects of a single
647  variable, leading to a positive dependence. Moreover, feedback mechanisms within the
648  ecosystem may be strengthened when both GPP and LST interact. For example, a higher
649  GPP indicates an increased rate of photosynthesis and a higher biomass accumulation,
650  which help improve the soil structure by increasing the organic matter content and
651  thereby enhancing soil water retention. In this scenario, the rise in LST may not result
652  in significant moisture loss, as the improved soil structure can offset the increase in
653  evapotranspiration, fostering a positive dependence. Another possibility is that when
654  both GPP and LST act together, the ecosystem may exhibit greater resilience, enabling
655 it to adapt to changes in soil moisture and precipitation. For example, an increased GPP
656  could improve the plant’s water-use efficiency, while the rise in LST could release more
657  soil moisture through freeze—thaw processes in colder regions, resulting in more
658  available water for plant uptake. This balancing mechanism helps maintain ecosystem
659  stability, resulting in a positive dependence.

660 The interannual negative dependence between precipitation and soil moisture is
661  increasingly observed under global climate change. The biomes of the montane
662  grasslands and shrublands include the Puna and Paramo in South America, the
663  Subalpine Heath in New Guinea and East Africa, the Steppes of the Qinghai—Tibetan
664  Plateau, and other subalpine habitats worldwide (Olson and Dinerstein 1998). These
665  ecoregions, located in tropical, subtropical, and temperate regions, are particularly
666  vulnerable to the effects of climate change. High-altitude ecosystems are expected to
667  experience more frequent warm periods and fluctuations in precipitation, with more
668  pronounced feedbacks as they face long-term climatic stress (Lamprecht et al. 2018).
669  Montane grasslands and shrublands are adapted to long-term cold, moist conditions and

670  strong solar radiation, with vegetation extending to altitudes of up to 4500 to 4600 m
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671  (Olson and Dinerstein 1998). However, global climate change, particularly in the Arctic
672  and the Qinghai—Tibetan Plateau, is driving rapid warming in permafrost regions. Field
673  experiments have shown that higher temperatures may lead to a decrease in species
674  abundance and an increase in GPP in high-altitude vegetation communities (Berauer et
675  al. 2019). Studies also suggest that the standardized abundance of montane grasslands
676 and shrubland communities is negatively correlated with soil magnesium and
677  phosphorus content, carbohydrate metabolism, virulence, motility, and organic nitrogen
678 and sulfur (Graham Emily et al. 2024). The increased frequency of extreme
679  precipitation and rising LST facilitate the release of soil minerals and decrease
680  microbial biomass (Siebielec et al. 2020). Improvements in soil nutrient status often
681 lead to intensified competition for radiation, further reducing ecosystem stability. The
682  decline in biodiversity directly diminishes ecosystem resilience, which in turn lowers
683  soil water capacity. Additionally, 14.5% of global montane grasslands face a high risk
684  of water erosion (Straffelini et al. 2024), presenting significant challenges for soil and
685  water conservation. While the Arctic tundra is also at risk of shrubification due to
686  warming, it remains relatively drier, with extreme precipitation far below that of the
687  montane grasslands and shrublands. On an annual scale, montane grasslands and
688  shrublands are primarily controlled by evapotranspiration, and the combination of this
689  control with a decline in soil water capacity results in a clear negative dependence: As
690  precipitation increases, soil moisture decreases, driven by the interaction between GPP
691  and LST.

692 In semi-arid and arid grassland systems, brief precipitation events typically only
693  moisten the upper clay layers, where most grass roots are concentrated (Sala and
694  Lauenroth 1985). Well-developed clay layers can store infiltrated water, but they also
695  prevent the deeper expansion of shrub vegetation roots (Buxbaum and Vanderbilt 2007).
696  As GPP and LST increase, the loss of water stored in the upper clay layers through
697  evapotranspiration is exacerbated, resulting in a negative dependence between
698  precipitation and soil moisture. Additionally, model simulations suggest that in regions

699  with simple topographic structures, such as arid and semi-arid grasslands and
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700  shrublands, precipitation has a significant effect on soil moisture (Koukoula et al. 2021).
701  Dry soils are also more prone to surface runoff during precipitation events, a

702  phenomenon known as the “dry soil advantage.”

703 4.4 Data reliability

704 The CRU TS dataset used in this study is based on ground-based meteorological
705  station observations, while the ESA CCI dataset is derived from satellite-based surface
706  temperature measurements. The GPCP dataset combines both ground-based
707  observations and satellite data, which are directly based on actual observational data.
708  In contrast, the ERAS-Land dataset is generated using ERAS as the forcing data. While
709  ERAS provides a comprehensive range of meteorological data and is widely used, it
710  relies on numerical weather prediction models, which are based on principles of
711 atmospheric physics. These models use observational data to calibrate their outputs,
712 and using ERAS5 meteorological data, uncertainties inherent in the model are introduced.
713 Consequently, different sources of meteorological data were selected for this study.
714 All data were clipped according to the boundaries of Terrestrial Ecoregions, which
715  were integrated from multiple studies by the Conservation Biology Institute. These
716  ecoregions are based on different criteria across regions and are widely accepted,
717  although they may be controversial in some areas. Therefore, discussing the driving
718  factors of the negative dependence between precipitation and soil moisture in these
719  regions may involve potential biases and uncertainties.

720 Given the clear seasonal variations in precipitation and evapotranspiration and the
721  minimal interannual variability, precipitation volume, frequency, and control of
722  evapotranspiration on soil moisture were analyzed at both the monthly and seasonal
723 scales. The study also explored the precipitation—soil moisture dependence and its
724  driving factors at the monthly and annual scales. While seasonal and interannual
725  variations were observed, the seasonal scale was omitted to emphasize the seasonality
726  of evapotranspiration. In the Bayesian models, the discussion focused on GPP,
727  temperature, and LST as driving factors. Since temperature and soil moisture are input

728  variables for evapotranspiration calculations, evapotranspiration was excluded from the
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729  analysis as a negative dependence driver.

730 In addition to the factors discussed in this study, other variables such as wind
731  patterns and topography may also influence the negative dependence between
732 precipitation and soil moisture. While this study provides a foundational analysis of the
733 negative dependencies across different ecoregions, future research should explore these

734 aspects further.

735 5. Conclusion

736 This study explored the dependence relationships between precipitation and soil
737  moisture at depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm from 2000 to 2019, by
738  examining the control effect of precipitation volume, precipitation frequency, and
739  evapotranspiration on soil moisture. Bayesian models were used to analyze the driving
740  factors in the dependence of soil moisture to precipitation in different ecoregions of the
741  Northern Hemisphere. The results suggest that, at the monthly scale, precipitation
742 volume predominantly controlled soil moisture in the Boreal forest/taiga, temperate
743  grasslands, savannas, and shrublands, while precipitation frequency primarily
744 controlled soil moisture in the high-latitude regions of the Northern Hemisphere. The
745  combined influence of evapotranspiration and precipitation exhibited clear seasonal
746  patterns. Evapotranspiration was the main driver during the growing season, while
747  precipitation volume dominated in the non-growing season. As latitude increased, the
748  influence of precipitation frequency on soil moisture also increased.

749 In regions such as temperate grasslands, savannas, shrublands, deserts, xeric
750  shrublands, and tundra, negative dependencies between precipitation and soil moisture,
751  driven by LST and T.:GPP interactions, were observed. These negative dependencies
752  were mainly attributed to the seasonality of precipitation in arid and semi-arid areas and
753  the freeze—thaw processes in the soil, which hinder effective moisture replenishment,
754  especially during winter when soil freezing prevents rainwater infiltration. In the
755  intermediate and deep soil layers, negative dependencies were primarily driven by
756  single variables, whereas positive dependencies resulted from multivariate interactions,

757  likely due to the lack of compensatory mechanisms when a single variable dominated,
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758  or the enhancement of ecosystem feedbacks when both GPP and LST interacted.
759  Additionally, when the ecosystem is simultaneously driven by GPP and LST, greater
760  resilience may be exhibited.

761 At the annual scale, the area of negative dependence increased with soil depth,
762  with the most pronounced negative dependencies occurring in the montane grasslands
763  and shrublands region. In this region, negative dependencies at all three soil depths
764  were driven by the GPP:LST interaction. The main cause of the negative dependence
765  in the montane regions was the long-term variability in precipitation and temperature,
766 ~ which lead to changes in geomorphology and vegetation community structure,
767  ultimately reducing the soil water capacity. Another potential cause of the negative
768  dependence is the detrimental effect of increased extreme precipitation on microbial
769  activity and ecosystem resilience in these regions.

770

771 Data availability

772 ERAS-Land soil moisture dataset can be accessed at

773  https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview

774 (accessed on 18 Mar 2024). GPCP precipitation dataset can be accessed at

775  https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-

776  daily/access/ (accessed on 11 Mar 2024). The Gross primary production dataset can be

777  accessed at https://researchdata.tuwien.ac.at/records/1k7aj-bdz35 (accessed on 23 Oct

778  2023). Climatic Research Unit gridded Time Series air temperature data can be accessed

779  at https://crudata.uea.ac.uk/cru/data/hrg/cru_ts4.07/cruts.2304141047.v4.07/tmp/

780  (accessed on 20 Aug 2023). Land Surface Temperature dataset can be accessed at

781  https://data.ceda.ac.uk/neodc/esacci/land_surface temperature/data/SSMI_SSMIS/L3

782  C/v2.33/monthly (accessed on 27 Aug 2024). GLEAM Evapotranspiration data can be

783  accessed at https:/www.gleam.eu/#downloads (accessed on 19 Mar 2024). Terrestrial

784  Ecoregions dataset can be accessed at

785  https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world

786  (accessed on 5 Sep 2024)
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